Aronsson’s equations on Carnot–Carathéodory spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Fractional relaxation equations on Banach spaces

We study existence and qualitative properties of solutions for the abstract fractional relaxation equation (0.1) u′(t)−ADα t u(t) + u(t) = f(t), 0 < α < 1, t ≥ 0, u(0) = 0, on a complex Banach space X, where A is a closed linear operator, Dα t is the Caputo derivative of fractional order α ∈ (0, 1), and f is an X-valued function. We also study conditions under which the solution operator has th...

متن کامل

Metric Spaces and Differential Equations

The concepts of metric spaces (complete and incomplete) and associated topics are illustrated and used to prove existence and uniqueness theorems in the theory of differential equations.

متن کامل

Differential Equations in Metric Spaces

We give a meaning to derivative of a function u : → X, where X is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space TxX of x ∈ X. Let u, v : [0, 1) → X, u(0) = v(0) be ...

متن کامل

Sobolev Spaces and Elliptic Equations

Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2008

ISSN: 0019-2082

DOI: 10.1215/ijm/1254403713